MCA4A Series: Four channel Multichannel Analyzer with USB 3.0, MCS, RTC

1-4 - input MCA with 32k resolution, > 1 M events / sec on each channel, MCS mode, RTC (option), eight 125 MHz Scalers (option). Digital Pole Zero Filter and Trapezoidal Pulse Shaper. Scope mode for monitoring input signal wave forms.

Description:

The MCA4A series is a family of USB-connected, software controlled Multichannel Analyzers. The design is capable of converting incoming analog pulses (PHA mode) on up to 4 channels at virtually no conversion induced dead-time. Pulse Height Analysis can be performed using different fitting algorithms optimized for different input pulse forms and shaping times. A digital Pole Zero Filter and Trapezoidal Pulse Shaper enables to even process typical Pre-Amplifier signals. PHA data is transferred via the USB 3.0 interface in list-mode at a max. rate of >1 M events / sec on each input. Four continuously every 8 ns sampling 16 bit ADCs with extraordinary stability enable 32k resolution for PHA mode. The availability of the simultaneous usage of the oscilloscope (Scope) mode together with a Fast Fourier Transformation (FFT) and software pulse height analysis allows for an easy setup and evaluation of the experiment. The PHA data can be tagged with the 8 digital I/O bits and also with the 8ns Real Time Clock. A set of eight 125MHz 48bit Counter/Scalers (option) is also provided. In Multiscaling (MCS, option) mode the internal memory is used to accumulate spectra of up to 16M bins. An automatic sequential mode allows to acquire up to 65536 sequential spectra – each with a presettable number of sweeps – with no deadtime between each cycle or synchronized with an external signal. The maximum count rate is 400 MHz, Dwelltime is 30 ns for one STOP input or 50ns for two STOP inputs. An 8 bit digital I/O port provides controlling external devices or to react on additional external signals. It can be used as 8 TAG bits that are sampled with 2.5 μsec. The “GO-LINE” compatibility allows to synchronize start and stop of the experiment across many measurement devices. The 32 bit or 64 bit MPANT Windows Software is able to handle 6 MCA4A providing up to 24 MCA channels. In-field upgrade options enable upgrading of MCS mode, more MCA channels, 8 ns RTC time tagging, Scalers, and multiparameter coincidences for 2 or 4 ADCs including Replay of list files.
Features

- Complete versatile MCA data acquisition system
- Several operating modes:
 - PHA (pulse height analysis) using 1 to 4 inputs
 - Digital Pole-Zero filter and Trapezoidal filter for positive and negative preamplifier signals
 - SVA (sampled voltage analysis) mode
 - SCOPE mode using 1 to 4 inputs (32...262μs)
 - FFT mode using 1 to 4 inputs (0..62.5MHz)
 - Simultaneous SCOPE / FFT / PHA usage
 - MCS (multichannel scaling) using 1 or 2 inputs (option)
- 4 on board 125MHz sampling, virtually dead-time-less pulse height analyzing 16 bit ADCs
- >1 M PHA events per second on each channel
- ADC resolution 32k/16k(64k), optional 2k, 4k, 8k
- 4 ADC buffer memories allow storage of up to 8 analogue pulses (depending on pulse widths) each providing virtually dead-time-less data acquisition
- Several optimized pulse height analysis fitting algorithms (absolute maximum, for Gaussian pulses, for flat-top pulses, future kinds optional)
- ADC input range switchable (0...+10V or ±5V) (optional 0...+8V or ±4V ranges)
- GATE inputs and SCA outputs
- External Clock and RTC Reset inputs
- Optional eight 125 MHz 48bit scalers, 2 are presettable, optional up/down counting controlled by individual gate inputs
- Easy experimental setup due to simultaneous SCOPE, FFT, PHA data acquisition possibility, internal test pulser
- Digital stabilizer for gain and zero stabilization
- Sum spectrum shifted according to individual calibrations enables forming a super-detector
- MCS mode offers two inputs with programmable (fast/slow NIM, rising/falling edge) discriminators
 - individual threshold adjustable for Start and Stop inputs
 - Maximum MCS count rates of 400MHz
 - Dwell time from 30ns for 1 input and 50ns for 2 inputs up to 781h in steps of 10ns or external
 - No dead-time between channels, no double counting, no end-of-sweep dead-time
 - Automatic sequential mode for up to 65536 sequential MCS spectra
 - On board MCS memory (16M x 32bit)
- 8 bit digital I/O lines can be used as 8 TAG bits, sampled with 2.5μsec
- 4 Single Channel Analyzer (SCA) outputs, software programmable for several SYNC signals
- GO-LINE compatible with other FAST products
- Available in various configurations, options in-the-field upgradable
- 1 ns real time clock (RTC) tagging standard,
- 8 ns RTC optional for each ADC
- Dualparameter coincidence mode optional
- Four parameter coincidence mode including Replay of list files optional

Applications:
- Nuclear- and X-ray spectroscopy
- LIDAR
- Mössbauer Spectroscopy
- Dynamic Desorption Studies
- Cross-correlation measurements
- Scanning Mass Spectroscopy
- Fluorescence Lifetime Studies
- Time-correlated Single Photon and Ion Counting
- Laser induced chemical reactions
- Portable Spectrum Analysis
- Setup of experiments in High-Energy Physics
- OEM-applications
- Remote Spectrum Acquisition

Applications:
- Nuclear- and X-ray spectroscopy
- LIDAR
- Mössbauer Spectroscopy
- Dynamic Desorption Studies
- Cross-correlation measurements
- Scanning Mass Spectroscopy
- Fluorescence Lifetime Studies
- Time-correlated Single Photon and Ion Counting
- Laser induced chemical reactions
- Portable Spectrum Analysis
- Setup of experiments in High-Energy Physics
- OEM-applications
- Remote Spectrum Acquisition

Applications:
- Nuclear- and X-ray spectroscopy
- LIDAR
- Mössbauer Spectroscopy
- Dynamic Desorption Studies
- Cross-correlation measurements
- Scanning Mass Spectroscopy
- Fluorescence Lifetime Studies
- Time-correlated Single Photon and Ion Counting
- Laser induced chemical reactions
- Portable Spectrum Analysis
- Setup of experiments in High-Energy Physics
- OEM-applications
- Remote Spectrum Acquisition

Applications:
- Nuclear- and X-ray spectroscopy
- LIDAR
- Mössbauer Spectroscopy
- Dynamic Desorption Studies
- Cross-correlation measurements
- Scanning Mass Spectroscopy
- Fluorescence Lifetime Studies
- Time-correlated Single Photon and Ion Counting
- Laser induced chemical reactions
- Portable Spectrum Analysis
- Setup of experiments in High-Energy Physics
- OEM-applications
- Remote Spectrum Acquisition

Applications:
- Nuclear- and X-ray spectroscopy
- LIDAR
- Mössbauer Spectroscopy
- Dynamic Desorption Studies
- Cross-correlation measurements
- Scanning Mass Spectroscopy
- Fluorescence Lifetime Studies
- Time-correlated Single Photon and Ion Counting
- Laser induced chemical reactions
- Portable Spectrum Analysis
- Setup of experiments in High-Energy Physics
- OEM-applications
- Remote Spectrum Acquisition
Specifications

PHA (SVA) mode:
ADC: 4x 125MHz continuously sampling, Software programmable ULD, LLD and THRESHOLD
ADC inputs: 4x BNC, ZIN > 1kΩ, 0...+10V / ±5V range, other ranges settable by jumpers: 0...+8V / ±4V, 0...+2.5V / ±1.25V, 0...+2V / ±1V
GATE input: 4 x BNC, ZIN = 50Ω or ZIN = 4.7kΩ pullup (+3.3V) or pull-down, (TTL), coincidence or anticoincidence in Gate mode, +/- edge sensitive when used as sampling input for SVA
Memory: 32k ADC sample buffer memory (segmentable in up to 8 segments) for virtually dead- time-less pulse height analysis (each input)
List-mode storage of analyzed PHA data
Max. rate: > 1 M events per sec on each input without loss
Time Tags: Each input pulse tagged with 1ms or RTC with 8ns time resolution (option)
Real- / Live-Time counter: 1 ms resolution, presettable, one for each input channel
8 bit digital I/O lines: external control / sample-changer, status Optional as 8 TAG inputs, sampled with 2.5 μsec.

MCS mode:
MCS inputs: START, STOP 1 & 2, Channel Advance MCS inputs: 4x BNC, ZIN = 50Ω or ZIN = 4.7kΩ pull-up (+3.3V) or pull-down, seperately adjustable thresholds -2V .. +2V, 400 MHz max
On board histogramming memory:
16M x32bit
Dwell time modes: software selectable internal, or external channel advance
Dwell time / bin: 30 ns for 1 and 50 ns for 2 inputs...781h settable in steps of 10 ns. (2^48 x 10 ns)
Dead-time between time bins: zero
End-of-sweep dead-time: 10ns
Spectrum length: up to 16M time bins
Sweep Counter: 48 bit, presettable
Sequential mode: 1...65536 spectra with no dead- time between each cycle or synchronized with external signal
8 bit digital I/O lines: for external control / sample- changer, status

Connectors:
Analog signal inputs: 4x BNC
GATE / MCS inputs: 4x BNC
FEATURE I/O: 15 pin high density, female D-SUB (Analog Ground, 8 bit Digital I/O, GOLine, 4x SCA)
12V Supply: 2.1mm center pin (rear panel)
USB 3.0: (rear panel) Type A
Ext. Clock / RTC Reset: 2x BNC (rear panel)
Scalers: D-SUB 37 (rear panel)

Power Requirements:
+11...+14V / 15W power supply enclosed

Physical:
aluminum case, 260mm x 275mm x 48mm, 1.7 kg
Shipping case: 420mm x 320mm x 160mm, 3.4 kg

Order Information

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Order No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCA4A</td>
<td>Multichannel Analyzer (4ch)+dual fast MCS, int. ADC, MPANT Software; USB 3.0</td>
<td>MCA4A</td>
</tr>
<tr>
<td>MCA4A-MPA2</td>
<td>2 channel multiparameter, incl. 2 RTC, MPANT Software; USB 3.0</td>
<td>MCA4AM2</td>
</tr>
<tr>
<td>MCA4A-MPA4</td>
<td>4 channel multiparameter, incl. 4 RTC, MPANT Software; USB 3.0, Replay+Ex</td>
<td>MCA4AM4</td>
</tr>
<tr>
<td>MCA4A-GOLD</td>
<td>MCA4A-MPA4 + dual fast MCS, OV,CNT,UPDN,TAG,DLL</td>
<td>MCA4AG</td>
</tr>
<tr>
<td>MCA4A-3</td>
<td>Multichannel Analyzer (3ch), int. ADCs (32k), MPANT Software; USB 3.0</td>
<td>MCA4A3</td>
</tr>
<tr>
<td>MCA4A-4</td>
<td>Multichannel Analyzer (4ch), int ADCs (32k), MPANT Software; USB 3.0</td>
<td>MCA4A4</td>
</tr>
<tr>
<td>MCA4Aopt-RTC</td>
<td>RTC for one ADC channel, included in MCA4A-MPA2/4</td>
<td>MCA4ARTC</td>
</tr>
<tr>
<td>MCA4Aopt-MCS</td>
<td>2ch fast MCS, 30/50ns dwell time option MCA4A-x, included in MCA4A</td>
<td>MCA4AMCS</td>
</tr>
<tr>
<td>MCA4Aopt-TAG</td>
<td>TAG bit input, 8 bit, stored with ADC data at time of input threshold crossing</td>
<td>MCA4ATAG</td>
</tr>
<tr>
<td>MCA4OV</td>
<td>OPTION oven controlled oscillator for MCA4A</td>
<td>MCA4AOV</td>
</tr>
<tr>
<td>MCA4CNT</td>
<td>Counter / Scaler option for MCA4A, 48 bit, 8 channels, 2 are presettable</td>
<td>MCA4CNT</td>
</tr>
<tr>
<td>MCA4UPDN</td>
<td>Up- and downcounting option controlled by individual gate, requires MCA4CNT</td>
<td>MCA4UPDN</td>
</tr>
<tr>
<td>MCA4ADLL</td>
<td>DDL for LabVIEW/C/Virtual Basic (32 + 64 bit) for MCA4A</td>
<td>MCA4AS1</td>
</tr>
<tr>
<td>MCA4ARepl-Ex</td>
<td>Replay software for MPA data</td>
<td>MCA4AS3</td>
</tr>
<tr>
<td>MCA4A-MPASW2</td>
<td>Multi parameter software for 2 channels, included in MCA4A-MPA2</td>
<td>MCA4AS4</td>
</tr>
<tr>
<td>MCA4A-MPASW4</td>
<td>Multi parameter software for 4 channels, included in MCA4A-MPA4</td>
<td>MCA4AS5</td>
</tr>
<tr>
<td>MCA4Aupupgrade</td>
<td>Additional cost for in-field upgrade (+ price difference of versions involved)</td>
<td>MCA4Aup</td>
</tr>
<tr>
<td>MCA4Aup-opt</td>
<td>Additional cost for 1/2ch → 4ch hardware (upgrade possibility → 3,4 ADC ch)</td>
<td>MCA4Auo</td>
</tr>
</tbody>
</table>