The PC11 is a printed circuit board designed to facilitate testing of the A101. In addition to testing circuitry, it provides component locations for use with detectors. Ground plane construction minimizes external pick-up.

Inputs:
- **IN**: Detector input; PIN 12; should be AC coupled with a high voltage capacitor (500 pF - 1000 pF).
- **DET**: Provides post to connect the detector and input capacitor.
- **TEST IN**: Input to test circuit as described in specifications.
- **Vs**: PIN 2; supply voltage (+4 to +10 VDC).
- **H.V.**: Provides post to connect the detector to the high voltage supply through a resistor.

Outputs:
- **+ OUT**: Positive, TTL type output from PIN 5.
- **O.C. OUT**: Negative, open collector output from PIN 6. (Must be connected through 1 kohm to Vs.)
- **BUF OUT**: Positive output through a Buffer/Line Driver IC from PIN 5.

Components:
- **CV**: Filter capacitor.
- **RP**: Pullup resistor (1 kohm).
- **C**: Test capacitor (2 pF).
- **R**: Test pulse termination resistor (50 ohm).
- **Rt**: Threshold adjustment resistor.
- **CW**: Pulse width adjustment capacitor.
- **CD**: High voltage detector coupling capacitor (user supplied).
- **RB**: Detector bias resistor (user supplied).
- **U2**: Line Driver TPS2829.

Dimensions: 1.75 in. square (4.45 cm square)
The A101 can be tested with a pulser by using the small 2 pF test capacitor to inject a test charge into the input. The unit will trigger on the negative-going edge of the pulse, which should have a transition time of less than 20 ns. Either a tail pulse with a much longer fall time (>1 µsec) or a square wave may be used. If a square wave is used, triggering on both the positive and negative going edge will occur for large pulses.

Charge transfer in the test circuit is according to \(Q = CV \) where \(Q \)=Total amount of charge, \(C \)=Capacitor, and \(V \)=Voltage.

Typical test circuit

Examples: 1) A 0.25 volts test pulse into 2 pF test capacitor will transfer 0.5 pC into the input of the A101. 2) Using the 2 pF test capacitor, the nominal threshold of the A101 will be at 80 mV.

CAUTION: Use only the TEST INPUT to test the A101 with a pulse. DO NOT connect the test pulser to the input directly or through a large capacitor (>100 pF) as this can produce a large current in the input transistor and cause irreversible damage.